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(RI'C('in:tI 7 Jllly 1989; in rl'l"ised j"rm 30 N(1('emher 1989)

Abstrllct-Matri;\ cracking in brillie-matri;\ fiber-reinforced composites is investigated when the
fracture strain of the fiber is greater than that of the matri;\. The a;\isymmetric problem of an
intinitely long elastic fiber perfectly bonded to an clastic matri;\ which contains an annular crack
surrounding the fiber is considered for the case of uniform longitudinal strain. The problem is
ftlrmulated in terms of a singular intcgral equati'lll with a Cauchy type kernel. When thc inner crack
tip terminates at the interfa~-e. it is shown that the characteristic equation is the s.lme as that for
the case of plane strain. Stress intensity factors at the crack tips are given when (al the inner crack
tip is away from the interl:lce and (ll) the inner crack tip is at the interfat:e.

INTRODUCTION

The present investigation concerns brittle-matrix fiber-reinforced composites subjel.:ted to
longitudinal tension. Prior to the lirst crack appearing in the undamaged I.:ompositc. the
longitudinal tensile strain is uniform .lIld the same in the fiber .1Ild matrix. In general the
fral.:ture strain of the libel' is lIIudl higher than that of the matrix and the initiall.:racks th.tt
.tppear in the matrix .tre in a plane perpendil.:ular to the direction of loading. The fracture
prol.:ess wuld initi.tte .tl the site of imperfel.:tions SUdl as impurities or voids in thc matrix.
When the applied load is inl.:reased. the matrix I.:ral.:ks propagate and surround the libel'S.
Redistribution ofload takes place between the libel'S and the matrix. wilh the fibers carrying
more load than the m.llrix.

The pioneering work on matrix cracking in brittle-matrix fiber-reinforced I.:ompositcs
is due to the elrorts of Aveston el al. (1971) who introdul.:cu I.:ertain concepts whil.:h arc
now known as the ACK theory. More recently ACK lheory has been further extended and
improved upon by Marshall £'1 al. (1985). Budiansky et al. (1986) and McCartney (1987).

In this paper the axisymmetric problem of an infinitely long libel' cmbedded in an
infinite matrix with an annular crack surrounding the libel' is considered. (Sec Fig. I.) The
case of a single fiber is taken to represent the cxtreme case where the spacing between libel'S
is large compared to the radius of the fiber. The problem is formulated such that any
axisymmetric longitudinal tensile loading can be considered.

The problem of an annuhtr crack located in an isotropic homogeneous clastic solid
has been considered previously by Choi and Shield (1982). Nied and Erdogan (1983).
Selvadurai and Singh (1985) and by Clements and Ang (1988). Earlier work on this problem
was c.mied out by Smelanin (1968). Moss and Kobayashi (1971) .1IlU Shibuy'l et til. (1975).

FORMULATION OF TilE I'ROBLEM

An infinitely long clastic fiber of radius II is perfectly bonded to the clastic matrix which
contains an annular crack surrounding the libel'. as shown in Fig. I. The inner and outer
radii of the crack are hand c. respectively (h < c <Xl). A uniform longitudinal tcnsile
strain F.u is applied to the system at == ± 00 and the matrix is not constrained at r = oc.
The required solution is obtained by the superposition of the solutions of two related
problems. In the first problem the perfectly bonded libel' and matrix in the absence of the
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Fig. I, An annular crack in the matrix surrounding an cl.lstic tiber.

annular ~ra~k are subje~ted to the uniform longitudinal tcnsile strain I:... while the matrix
is allowed to deform freely at r ::: x. The first problem can he solved without mu~h dilli~ulty

and the stress fields arc given in Appendix A. The matrix stresses relJuired for the second
prohlcm arc ".);(r.O) = Ell: .. and ".,':(r. 0) = 0 where E 1 is the Young's modulus of the
matrix. Sin~e "',I.(r. 0) is identi~ally equal to J:ero, the stresses applied to the cm~k surf"lecs
in the sewnd prohlcm arc those elJual and opposite to the stresses ".}:(r. 0). In this paper
we consider the prohlem where the cral:k surface tractions arc the only external loads.

For axially symmetric rrohlcms the non-vanishing displal:ements and stresses can be
expressed in terms of Love's stress function x(r. =) as follows (Love. 1944, p. 276; Timo
shenko and Goodier. 1970. p. 3X I)

I [ , iYx]1I:(r.=) = ~.-- 2(I-v)V'-X-~-, .
':'11 ():-

(I )

(2)

(3)

(4)

(5)

(6)

when: x(r. :) is an axisymmetric biharmonic function. V~ is the axisymmetric Laplacian, jl

is the shear modulus and \' is Poisson's ratio. Since: = 0 is a plane of symmetry the semi
infinite domain =~ 0 is considered.

The fiber x"(r, =) is defined by
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where the functions j; (i = I. 2. 3) are yet to be determined. I n( ) is the Bessel function of
the first kind of order nand In( ) is the modified Bessel functions of the first kind of order
11. Hence the displacements and relevant stress components in the fiber can be expressed as

o I {2fr . . .
II, (r.:) = - 1- II ils)/, (rs) +j 2(s)rslo(rs)]s· cos (:s) ds

-Jl o It I)

I/~'(r.:) = ,L {= f < [/, (s)/lI(rs) +fz(s)[4( 1- \'11) I" (rs) + rs/, (rs»)]s! sin (:s) ds
-JI" It "

"l r'
11;:(r.:) = : J" {I, (.1')[ -/1I(rs) + II (rs)/rsl +Iz(s)[(2\'" - J )/,,(rs) - rs/l (rs»)}

xsz cos (:.1') ds+f"I,(fI)fl4[(J -:fI)J,,(rfl) -(1-2v,,-:p)J,(rp)/rp) e :p dp. (10)
II

''If'" -11::(r.:) =
It "

{II (s)/II(rs) +fz(s)[2(2 - vlI)/,,(rs) + rS/ 1(rs»)}s I cos (:.1') ds

where JI" and v" an: the fiber shear modulus and Poisson's ratio. respectively.
The matrix XI(r.:) is defined by

"f"xl(r.:) =:: U~(s)Ku(rs)+fs(s)rsKI(rs»)sin (=.1') ds
7t n

where the functions f, (i = 4. 5. 6) arc still to be determined and Kn( ) is the modified Bessel
function of the second kind of order 11. The displacements and relevant stress components
in the matrix arc expressed as
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xs' cos (;s) ds+ r'- J~(p)p~[(I-;;p)JII(rp)-(1-2\',-;;p)Jdrp)/rpl e-=r dp. (16)
Jo

'i'1 -11,,(r.;;) = ~
It II

+ f' J;,(p)"I(1 +;;,,) e '''JO(rp) dp. (17)
Jo

'1', -rr,:(r.;;) =
It 0

when: 111 and \', arc the matrix shear modulus and Poisson's ratio. respectively.
The boundary conditions at the interface arc

while the plane;; = 0 is subjected to the.: conditions

rr;~(r.0) = O. 0 ~ r ~ a. a,!:(r.O) = O. a ~ r < x-.

a}:(r.O) = - p(r). h < r < c.

( 19)

(20)

(21 )

(22)

1I~(r.O) = O. 0 ~ r ~ a. 1I}(r.O) = O. a ~ r < h. c < r < cr.. (23)

From eqns (12) and (18) it is seen that eqn (21) is automatically satisfied. while /\(1') = 0
from the first eqn of (23). At this stage a new unknown function t/J(r) is introduced in the
cracked region as follows

II( iJ I
-I ._... -- :i-II: (r. 0) = t/J(r). h < r < c.

- \'1 ur

Hence from eqns (15). (24) and the second cqn of (23)

(24)
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p1~(p) =f rtjJ(t)J 1(pr) dr.
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(25)

The four boundary conditions at the interface, eqns (19) and (20), yield the following four
eqns for the unknown functions J, (i = 1,2,4,5) in tenns of the yet undetennined function
tjJ(r) as follows:

(26)

[In(as) - I, (as)/as]fl (.I') +[- (2vn- I )lo(as) +asl. (as)Jj~(s)

- [Kn(as) + K 1(as)/aslJ~(s) + [( 1- 2\'1 )Kn(as)

1 r-
-asAI(as)]f,(s) = .~J Jh r4J(r)1t3(r,.1') dt.

where Ii =1IIIIIu <Illd the functions It, (i = 1••••• 4) arc given by

(28)

(29)

- [as+ ~Q=-'::lJ'1(aS)KI(tS)}' (32)
(1.1'

(33)

In deriving eqns (26)-(29) and later on in this section. certain infinite integrals are evaluated
by making use of the formulae found in Erddyi (1954). Solving eqns (26)-(29). J, (i = I.
2. 4. 5) can be expressed as

. i" 1 ~ A,(s)h,(r.s)J. (s) = ttjJ(r) dr -J L. £\( -.
h S • _ • .1')

i'· I. ~ 8, (s)It,(t. s)
f~(s) = rcpU) dr-j L. £\( ) •

h S ,. I .I'

i' 1 ~ C,(s)It,(r.s)
f~(s) = rc/J(r) dr -:1 L. -A-(-)-'

h .1' ••• uS

(34)

(35)

(36)



310 A. C. WUEYEWICKREMA 1'1 at.

15(S) = rt¢(t) dt \_t D,(s)h,(t. s) .
J S· ,= I Ms)

(37)

where ~(s) is the determinant and A" B,. c" D" (i = 1, ... ,4) are the appropriate elements
of the adjoint of the coefficient matrix of eqns (26)-(29). From eqns (22) and (17), after
substituting for J. (i = 4. 5. 6) from eqns (36). (37) and (25) the following integral equation
is obtained:

where

~ r[_1- +k(r. t)] ¢(t) dt = - p(r). b < r < c
n: J t-r

k(r, t) = k I (r, t) + 2tk z(r, t),

m(r. t) - I II/(r, t)
k,(r.t) = ----- + ---.

t-r t+r

(38)

(39)

{

£(r/t),

l1I(r. t) = r £(/Ir) + (t! _r
z
) K(tlr),

t rt

r < t

r> t
(40)

f!(r.t . .I') = L1(I. {( t C;h,) Ko(r.l') + ( t D,hi)[-2(2-v , )Ko(r.l')+r.l'K ,(rS)1}, (42)
.\) I - I I - I

where K( ) and E( ) are the complete elliptic integrals of the first and second kind,
n:spectively. The singular integral equation of the lirst kind eqn (38) is solved under the
crack closure condition

f¢(r) or = O. (43)

which is obtained from the second elln of (23) and eqn (24). The physical significance of
eqn (43) is that the crack tips are closed at hand c.

INNER CRACK TIP AWAY FROM INTERFACE

When the inner crack tip is located away from the interface, i.e. h > a the dominant
kernel in the integr'll eqn (38) is the term I/(/-r). The kernel k,(r, t) has a logarithmic
singularity of the form logl/- rl and kz(r, I) is bounded in the interval h ~ r, t ~ c. The
solution of eqn (38) is of the form

(44)

where 9 I (I) is a bounded function. Normalizing the interval (h. c) by defining
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c-b
per) = P(p), K(p, r) = Tk(r. t).
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(45)

(46)

(47)

If I [ 1 ] FI(r)_. .- +K(p.r) --,-, dr = -P(p),
1t _I r-p (I-r-) L_

fl FI(r)
_1(I_r~)1/2dr=O.

-1<p<1 (48)

(49)

The function FI(r) is obtained by using a Gauss-Chebyshev type quadrature formula
(Erdogan and Gupta. 1972) and solving the singular integral eqn (48) numerically under
the constraint condition (49).

The stress intensity factors detined by

can he expressed as

/\(h) = lim J2(h - ~)(J:I:<r, 0),
r -. h

/\(c) = lim J2(r-c)(J~:(r.0),, .,.('

/\(h) = lim J2(r-h)(p(r) = tI:/lF1( -I).
, .... /1

/\(1') = -lim J2(,~-;·)(/J(r)= -tl:'~FI(I).
, ...... fO

(50)

(51 )

(52)

(53)

where til = (c-h)/2. Since FI(r) is determined at discrete points away from the end points
-I and + I. recourse is made to the formulae given by Krenk (1975) to obtain F I ( -I)
and 1"1(1).

INNER CRACK TIP AT INTERFACE

For the case h = a. i.e. when the inner crack tip is at the interface. k~(r, I) given byeqn
(41) is no longer bounded for all r, 1 in the closed interval [h. c). By adding and subtracting
the asymptotic value of f~(r. I. s) for large values of s. from the integrand in eqn (41).
k~(r. I) may be expressed as

where

k:r(r,/) = foG [f~(r.l.s)-f{(r.l.s)J d.l'+{2/(r./),

(54)

(55)

(56)
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I [I> .1 ]
IS,(r. t) =-;= I S + L T, .

2../ rt ' ~ I , ~ I

k:.,(r. t) = I:.,(r. n.

(57)

(58)

(59)

6(1- {Oc I = .~_~---_.

II + "1
2(1- jl),', ~ ---_.-._-"--.

. i£+"1
(60)

where R i • T. (i = I. 2, 3) and S, (i = I. .... 6) are given in Appendix Band /(i = 3 -4v,
(i = I. 2). In eqn (55), k:.1(r, t) is bounded in (h, c] for all r. t and k~,(r. t) is unbounded as
rand t approach a. The singular kernel k :.,(r. t) is of the same form as that given by Erdogan
('t al. (1973) for the corresponding plane strain problem.

Equations (38) can now be rewritten as

If'</;(t) If' Ii".. dl + 11 (r. t)t/J(t) dt + I c(r. t)tp(t) dt = - per).
It,,t-r It,, It,,

where

11 (r. t) = 2tk c,(r. t).

I c(I'. t) = k I (I', t) + 2tk :,(1'. I),

and where I ~(r, I) is .1 Fredholm kernel.
The solution to eqn (61) is expressed as

a<r<e (61 )

(62)

(63)

(64)

and following the technique given by M uskhelishvili (1953, Clwpter 5) which is also
elaborated by Erdogan t!t al. (1973) the following characleristil.: equations are obt.lined to
determine et and Ii :

where

cot ltet = O. (65)

(66)

d , = (I +ii"·,,)(ii+"·d. (67)

d:. =4( 1- Ji)(1 +11/(u). (6H)

d J = -(I-ii)(I +11"°)+(1 +ji/(u)(/l+"d-(1 +/(:>(/1+,,:>. (69)

It is noted th"t eqns (65) and (66) arc identic.1I to th'lt obt"ined in the pl.lOe strain case.
Equation (65) yields x = -! which is the well-known singul'lrity for a crack tip surrounded
by a homogeneous medium. The real constant {I is a function of the material properties of
the fiber and matrix.

Normalizing the interval (a. c) by defining
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c-a c+a c-a c+a
t = --r+ -- r= --p+--

:2 2' 2 2 '

fjJ(t) = h:(r) = F:(r)(l-r)'(r+ 1)/1,

p(r) = P(p),
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(70)

(71)

(72)

(73)

~fl {__I_+ L1 (p,r)+L:(p.r)}F:(r)(l-r)'(r+1) /l dr= -P(p), -I <p< I.
n _I r-p

(74)

The crack closure condition (43) yields the equation

f 1 F:(r)( 1- r)'(r+ 1)/1 dr = O. (75)

Equation (74) which is a singular integral equation with a generalized Cauchy kcrnel is
solved numcrically by mcans ofGauss~Jacobi integration forlllulae (Erdogan et al.• 1973).
under the crack c10surc condition eqn (75).

The stress inlensity factors .Ire defined by

I\(a) = lim 21!(a-r)~III1~~(r,O).
, --"

(76)

(77)

Making usc of the fact that the left-hand side of eqn (38) yields an expression for 11]:(r. 0),

for r > c. it can be shown that

I\(c) = -:2li~«('-a)/l9~(c) = -lim 2 11 :(c-r)-'(/>(r) = -:2/1+I/:a~/2F:(I), (78)
r _to

where a~ = «('-£1)/2.
11~~(r, 0) is obtained from eqns (II). (34) and (35) and the following expression is

obtained for 1\(£1)

K(a) = 21
.:II·(C - (1)'9:«(1) - II· lim 2 1/ :(r- (I) ~/lfjJ(r) = II·(I~/IF:( - I), (79)

, -"

where

II. = ~+~-! {(3 + 2P)(]i + 11:1) - (I + 2P)( 1+ ]ill:o)}.
:2 (I +11"0)(]i +11:1) sin n(1 +P)

Quadratic extrapolation was used to obtain F2( - I) and F2( I).

(80)

RESULTS AND DISCUSSION

In the numerical examples the Poisson's ratios were taken as \'0 = VI = 0.25 and
p(r) = E1f.o [eqn (A6), Appendix AI. The limiting case ofc ..... 00, which results in an external
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crack with uniform loading cannot be considered using this formulation. When the inner
crack tip is away from the interface. i.e. when both the crack tips h.tve square-root singu
larities. the normalized stress intensity factors arc dclined by

(81 )

where l10 = £,t.o. Figures 2 and J show the normalized stress intensity factors for the ratios
ale = 0.2 and 0.5. respectively. When the size of the crack is very small, i.e. when hie -+ 1.0,
the stress intensity factors are not sensitive to the presence of the fiber neither are they
influenced by the curvature of the body for ,111 values of (I; K'(h) and K'(c) -+ 1.0 which is
the result for the case ofa Griffith crack in a homogeneous. isotropic matri.'( in pl.tne strain.
When ji > I. K'(h) > K'(c) which implies that the crack would propagate inward towards
the center. When Jlo »Jl, and h -+ a. K'(h) < Kf(c) due to the presence of the fiber. For a
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given crack size. i.e. for fixed hie. both !\'(h) and !\'(l') dccrcasc with dccrcasing ii. as
expccted.

Whcn the inner crack tip is at thc interfacc thc normalized strcss intensity factors are
dcfined by

(82)

For {l = 1/7. 1/2. 1.0. 2.0 and 7.0. p takes the values -0.3304. -0.4295. -0.5. -0.5755
and -0.7149. respectively. The norm<~lizedstress intensity factors are given in Fig. 4. K'(a)
increases with decreasing J1. but the inner crack tip singularity dccreases with decreasing Ii
as expected and hence it is not possible to compare /\'(a) for ditferent ratios of J1. For a
given value of J1. when the position of the outer crack tip is held fixed K'(a) increases as
the radius of the fiber gets smaller. Since the outer crack tip singularity is independent of
J1. K'(c) decreases with decreasing J1 as expected. When ale -+ O. where c is finite and a-+

....(
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O. K'(c) -+ 2 ..j2/rr. thl: solution for the pl:nny-shapeJ cmck in a homogenl:ous. isotropic
matrix. For JI = 1.0 only. K'(c) -+ 1.0 as a,L' -+ 1.0 since K'(c) i~ dependent on /J as shown
in 1:1.1'1 (S2). Both curves K'(a) and K'(c) for the case JI = 1.0 agrel: with thl: results of
Clements and Ang (19XX) .
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APPENDIX A

Stress lields when the filler and matrix arc sunjected to a uniform longitudinal tensile strain f." at : = ± "t)

and the matri:ot is unconstrained at r = '"I) (Chawla. 19X7. p. IXX) arc

where

I1f~J(r) =

11],(r) = £,f."

(A I)

(A2)

(A3)

(M)

(AS)

(1\6)

(A7)

(All)

(M)

and II. v and £ arc the shear modulus. Poisson's ratio and Young's modulus res p'-'Ctively. The superscripts and
sunscripts 0 and I refer to the filler and matri:ot. respectively.

APPENDIX B

The functions R, (i = 1.2.3) •• ppcaring in cqn (56) arc given hy.

P,
R ---
1- Q,'

R. = ~ (- !:.!JI: + P.).
. Q, Q, -

(BI)

(B2)



3:!8

....here

A. C. WUEYEWICKRHIA el af.

P, = :!(I-Jl)(I +Jl",,)(r-a)(l-a).

(B3)

(~)

P, = (1-111: ;!(r-al( 1+ 110:0 )- J(r~ 1 - ~al(l + tt"ul+ (r-a)(r+ 1-2a)p" - (r-a)~p,d.

P, = 6+~"IC"1 -3)+Jl[ -:!Jl"o +~v, (1-2"1111 +(I-Jl{(r-a)pJ, +(r+I-2a)p"

+ ~(r-a)(r+I-:!a)pJJ+(r-a)'p)·l

(
(Sa 9a 1 39)

/,,, = (I +ij"o) -, + L" +3--:' +,,, +(9J+87itl/641-0Itt-ID/64r6JI {}'+r _r ,,_I

- vII (21/1 + ~~)/I61 + ""( 13t1 - 8):,\ 6r - 3(5Jl + 7)/4a+ 3vo(11 + 2)/a.

(
a I)p,. = -~(I +/1,,") -. +- +01/1-(1)/64r-vo(13/1-8);l6r+( -19/1+63)/100

. 8r' 1

+ vll ( 15/i- 26)/40+ 2\', (I + ti",,)/ll.

,
Q:"~ - -(I -/l')(2-J(I·"+V,)+'~""I·.I.

a

The l'uru.:lious '. (i ., 1..... 6) alld 'J: (i ." I. 2. J) re'luired tll detine I ;,(r. t) in e4n (57) arc expressed as

· /',Q, I
.\, "". ..

Qi (r+I-2a)'

· (r-a)!I-Ji)
.\, = - Q,(r+I-2a)I':I'

· (r-a)'ll-Jl)
.'i, = Q,(r+I_~a),fI:I'

~ = /',Q,
. ) Qi (r+I-2a)'

· (r-a)(1 -ji)
5. = - " .... '._,," 1'".

Q,(r+I-2a)

,., ( Q. Qj) I
T, = - Q, - Q, + Qi (r+"-2o)'

I
T, = - --.· ... (r-a)(I-Jl)I'II.. ,rQ,

(r-a)'(I-/1)
T, = - .-..- ....' -1',..

Q,(r+I-211)

(B5)

(B6)

(B7)

(B8)

(B9)

(010)

(011 )

(BIZ)

(1113)

( 1I1~)

(IUS)

(816)

(1l17)

(BllS)

(BI9)

(B20)

(Il:!\)

(B22)

(B23)


