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Abstract—Matrix cracking in brittle-matrix fiber-reinforced composites is investigated when the
fracture strain of the fiber is greater than that of the matrix. The axisymmetric problem of an
infinitely long elastic tiber perfectly bonded to an elastic matrix which contains an annular crack
surrounding the fiber is considered for the case of uniform longitudinal strain. The problem is
formulated in terms of a singular integral equation with a Cauchy type kernel. When the inner crack
tip terminates at the interface, it is shown that the characteristic equation is the same as that for
the case of plane strain. Stress intensity factors at the crack tips arc given when (a) the inner crack
tip is away from the interfuce and (b) the inner crack tip is at the interface.

INTRODUCTION

The present investigation concerns brittle-matrix fiber-reinforced composites subjected to
longitudinal tension. Prior to the first crack appearing in the undamaged composite, the
longitudinal tensile strain is uniform and the same in the fiber and matrix. In gencral the
fracture strain of the fiber is much higher than that of the matrix and the initial cracks that
appear in the matrix are in a plane perpendicular to the direction of loading. The fracture
process could initiate at the site of imperfections such as impuritics or voids in the matrix.
When the applied load is increased, the matrix cracks propagate and surround the fibers.
Redistribution of load takes place between the tibers and the matrix, with the fibers carrying
more load than the matrix.

The pioneering work on matrix cracking in brittle-matrix fiber-reinforced composites
18 due to the efforts of Aveston et af. (1971) who introduced certiin concepts which are
now known as the ACK theory. More recently ACK theory has been further extended and
improved upon by Marshall ef al. (1985), Budiansky et af. (1986) and McCartney (1987).

In this paper the axisymmetric problem of an infinitely long fiber embedded in an
infinite matrix with an annular crack surrounding the fiber is considered. (See Fig. 1.) The
case of a single fiber is taken to represent the extreme case where the spacing between fibers
is large compared to the radius of the fiber. The problem is formulated such that any
axisymmetric longitudinal tensile loading can be considered.

The problem of an annular crack located in an isotropic homogencous elastic solid
has been considered previously by Choi and Shield (1982), Nied and Erdogan (1983),
Selvadurai and Singh (1985) and by Clements and Ang (1988). Earlier work on this problem
was carricd out by Smetanin (1968). Moss und Kobayashi (1971) and Shibuya e al. (1975).

FORMULATION OF THE PROBLEM

An infinitely long elastic fiber of radius a is perfectly bonded to the elastic matrix which
contains an annular crack surrounding the fiber, as shown in Fig. 1. The inner and outer
radii of the crack are b and ¢, respectively (b < ¢ < ). A uniform longitudinal tensile
strain £, is applied to the system at = = + oo and the matrix is not constrained at r = oc.
The required solution is obtained by the superposition of the solutions of two related
problems. In the first problem the perfectly bonded fiber and matrix in the absence of the
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Fig. 1. An annular crack in the matrix surrounding an clastic fiber.

annular crack are subjected to the uniform longitudinal tensile strain &,. while the matrix
1s aliowed to deform freely at r = o, The first problem can be solved without much difticulty
and the stress fields are given in Appendix A. The matrix stresses required for the second
problem arc ¢).(r.0) = Ezy and a,.(r. 0) = 0 where £, is the Young's modulus of the
matrix. Since a,.(r, 0) is identically cqual to zero, the stresses applied to the crack surfaces
in the second problem are those equal and opposite to the stresses al,(r, 0). In this paper
we consider the problem where the crack surface tractions are the only external loads.

For axially symmetric problems the non-vanishing displacements and stresses can be
expressed in terms of Love's stress function x(r, 1) as follows (Love, 1944, p. 276 ; Timo-
shenko and Goodicer, 1970, p. 381)

(S
w(r,z) = — - e X n

2u orez’

ur,z) = L 2(1 =)V — (ZZJE:I (2)
o 2u 0z*
3 ., 0y
0,.(r.2) = a- [vV'x- 5r:]. (3)
¢ \ 10y
Ou(r.2) = ‘5__ [VV-X_ , Jr]' 4)
Py . M
6..(r.z) = (;‘ [(3—V)V'X‘ (q’_):c]v (3)
5= =iy = 2% (6)
a,.(r.z =3 (1—v X— 5|

where x(r, 2) is an axisymmetric biharmonic function, V* is the axisymmetric Laplacian, u
is the shear modulus and v is Poisson’s ratio. Since = = 0 is a plane of symmetry the semi-
infinite domain = > 0 is considered.

The fiber x°(r, 2) is defined by
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)

x'(r.2) = ;J U1 o (rs) + f+(s)rsT (rs)] sin (z5) ds
0

+J:) F(pp(Rvo+:zp) e~ ?Jy(rp) dp.  (7)

where the functions f, (i = 1. 2. 3) are yet to be determined, J,( ) is the Bessel function of
the first kind of order n and 7,( ) is the modified Bessel functions of the first kind of order
n. Hence the displacements and relevant stress components in the fiber can be expressed as

1 §2(" N
u(r.z) = — — { j LA (rsY+1(s)rsTy(rs)]s* cos (=s5) ds
}

2“‘, T

—J Si(p)p* (1 =2vo—zp) e J,(rp) dﬁ}. ®
0

[ A
u'(r.2) = S {n j} L1 (rs) + /23 = v ) o (rs) + sl (rs)]]s* sin (z5) ds

—j L3P R =vy) +zpl e 74 (rp) dp}. )]

)

”:)r("' ) = ; J {/| (‘)[ ~Ly(rs) + 1, ("-\')/"-"l +,/‘:(A")[(2"u = D ly(rs) —rsl, (")”

x 8% cos (z8) ds +J‘  /‘.(/;)/)‘[(! —zJolrp) = (1 =2vy—zp) (rp)/rp) ¢ 7 dp.  (10)

b} I
al(r.z) = ; j NG es) + /DR = v Ly (rs) +rsd (r8)] }s* cos (2s) ds

+J Jj'_,(p)p‘(l +zpye P (rp)ydp, (1)

by

6'(r.2) = ;J | LT rs) () sty (rs) +2(1 = v) ] (r9)]}s? sin (z5) ds

+f Ptz I () dp. (12)

where p, and v, are the fiber shear modulus and Poisson’s ratio, respectively.
The matrix 3 '(r, ) is defined by

2 £
1'(r.2) = nj 3 () Ko (rs) +f5(s)rs K (rs)] sin (o) ds

+J.) ‘ So(Pp2vy +zp) e Jy(rpy dp, (13)

where the functions f, (i = 4. 5, 6) are still to be determined and K,( ) is the modified Bessel
function of the second kind of order n. The displacements and relevant stress components
in the matrix are expressed as
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ul(r.z) = Z—L—l {TZJ” 1)K (rs) +£5(s)rsKo(rs)]s® cos (zs) ds
+I,Lfo(p)p‘(l =2y —zp)e 7S (rp) dl’}~
.2 = 5 {n J L) Kalrs)+£56)[ =41 =¥ )Ka(rs) + rsK ()]]5* sim (25) ds
-—'[: Selpyp (2L =v ) +zp) e " Jo(rp) dp}.
an(r.2) = %{[i =LK (rs) + K, (rs)/rs] +£5 () (1 = 2v ) Ko(rs) — rsK (r5)]}
xs' cos (z5) ds + Ll SpIP (L =2p)o(rp) — (1 =2y, = zp)J (rp)/rpl €7 dp.
al(r.z) = ;Er_[, V@YKo (rs) +f5(D[ = 2R = v ) Ko (rs) 4+ rsK (r9)]} 57 cos (z5) ds

+J Suppt (L 4zpy e 7 J4(rp) dp,
0

-

al(r.z) = ;‘[ UK (r8) + 5[ = rsKo(rs) £ 2(1 = v )K (r$)]}57 sin (z¥) ds

+J Jup)pize T (rp) dp

where g, and v, are the matrix shear modulus and Poisson’s ratio, respectively.
The boundary conditions at the interface are

wia,z) = ua,z), ul(u.z)=ula,z), 0<z<wm,
ou,z) = cl(u,z), ola.z)=06laz2), 0<z<x,
while the plane = = 0 is subjected to the conditions
al(r,0) =0, 0<r<a o(r,00)=0, u<r< =,
6.(r,0) = —p(r), h<r<e,

w(r,0) =0, 0<r<a, w(r.0)=0, asr<bh c<r<o.

(14)

(15)

(16)

(17N

(18)

(19)

(20)

(2
(22)

(23)

From eqns (12) and (18) it is seen that eqn (21) is automatically satisfied, while fi(p) =0
from the first cqn of (23). At this stage a new unknown function ¢(r} is introduced in the

cracked region as follows

)
M f_,,:‘ (r.0) =¢(r), b<r<ec.
l—v, Or

Hence from eqns (15). (24) and the second eqn of (23)

(24)
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(25)

The four boundary conditions at the interface, eqns (19) and (20), yield the following four
eqns for the unknown functions £, (i = 1, 2, 4, 5) in terms of the yet undetermined function

¢(r) as follows:

I
Al (as) f1(s) + asI (as) f-(s) + K (as) foi{s) +asKy(as) f5(5) = ;J 1)k, (1, 5) dt,

Y b
—fly(as) f1(s) = @d[4(1 = va)ly(as) +asl, (as)] f2(5) + Ky (as) f3(5)
+[ =4t = v )Ky(as) +asK, (a)] f<(5) = :},— J: td(tYh (1. 5) de,
[Tolas) — I (as)/as] [1() +{— (Qvo— ) y(as) + asl (as)] f:(5)
— [Kotas) + K, (as)jas] f1(s) 4 [(1 = 2v ) K (as)
—asK (@s)]fs(s) = :—‘ J: 1p(0hy(t.5) de,

— 1 (as) £1(8) = [asly(as) + 201 = v ) (as)]f2(8) = Ky (as) [1(s)

+[=asKolasy +2(1 = v YK (@)} fs(s) = \l‘j 1p{h, (¢, 5) di,
» i

where i = yu,/p, and the tunctions I, (i = 1, ., 4) arc given by
8y = —sl—asly(u) K (15) + 151 (as) Ko (15) + 200 = v ) (@) K (19) ]

ot ) = —si =3l (@) Ko (15) + 201 = v M o (@)K (1) + asl {as) K (19) ],

I{t,s) = -5 {1.\'[,,((1”/\',,(15‘) + 1 (ax) K, (1s) — ;I,(rl.\')[\'(,(t.v)

- [as-!- 2 :'V—!—)] ‘,i(‘u)Kl("s)]{'

()

hy(t,s) = —slasly(as)K, (1s) — 151 (as) Ko (15)}.

(26)

e3)

(28)

(29)

(30)

3h

(32)

33

In deriving eqns (26)-(29) and luter on in this section, certain infinite integrals are evaluated
by making usc of the formulae found in Erdelyi (19534). Solving eqns (26)-(29), f, (i = 1,

2,4, 5) can be expressed as

) 05 1 & A ({1, 5)
Sl = | 0 des ¥ =S5
L e l 4 B‘(S)h'(!ﬂ
f2(s) = . 1p(1) dl;‘,iz:‘ A(s)
re I & Ch.s)
Si@ = | b dis 2 5

(34

(35)

(36)
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I & D(9h(t.s)

fs(s) =£ (1) dts_,-,; AGS)

(37)

where A(s) is the determinant and 4, B, C, D, (i = 1....,4) are the appropriate elements
of the adjoint of the coefficient matrix of eqns (26)-(29). From eqns (22) and (17), after
substituting for f, (i = 4. 5, 6) from eqns (36). (37) and (25) the following integral equation
is obtained :

EJ [_l- +k(r. ,)] d(t)yde = —p(r). b<r<c (38)
T J» t—r

where

k(r.1) =k (r. )+ 2tks(r, 1),

m(r,t) =1 m(r.t)

ki =002 IRD, (39)
E(r/1). r<t
= :Eu/r)+(1._,‘r-')'\'(r/r). r>t “

ky(r. 1) =J fz(r, t.5) ds, (41

| 4 4
£y(rot.s) = A(‘) {( Y C,_h,>1\’,,(rs)+( Z 1),/1,)[—2(2--v,)K,,(r.v)+r.vK,(rx)]}, (42)

i1 =

where K( ) and £( ) are the complete elliptic integrals of the first and second kind,
respectively. The singular integral equation of the first kind eqn (38) is solved under the
crack closure condition

f $(r)ydr =0, (43)

which is obtitined from the second eqn of (23) and eqn (24). The physical significance of
eqn (43) is that the crack tips are closed at b and c.

INNER CRACK TIP AWAY FROM INTERFACE

When the inner crack tip is located away from the interface, i.e. » > a the dominant
kernel in the integral eqn (38) is the term 1/(¢—r). The kernel k(r. 1) has a logarithmic
singularity of the form loglt—~r| and k:(r. 1) is bounded in the interval b < r, t € ¢. The
solution of eqn (38) is of the form

d(0) = [(t=h)(c—0]""*g(. b<i<c (44)

where g,(¢) is a bounded function. Normalizing the interval (b, ¢) by defining
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- —b
r=5—,—br+c—:—b. r="p+ C—:—b (45)
(1) = hy (1) = F()(1—17) """, (46)

c—b
p(r) = P(p). K(p.1) = ——k(r.0). (@7
we obtain
! ! . Fi()

;:'Jil[;r__—p"lbl\(ﬂ.t)](l_rz)’ﬁ?dt—— - P(p). ’l<p<l (48)

l F.(T) _
J\*l(l——?ﬁdr =0. (49)

The function F (1) is obtained by using a Gauss-Chebyshev type quadrature formula
(Erdogan and Gupta, 1972) and solving the singular integral eqn (48) numerically under
the constraint condition (49).

The stress intensity factors defined by

K(b) = lim /2(h =)l (r.0), (50)
K(¢) = lim J2r=c)al(r.0), (51
can be expressed as
K(b) = lim /2(r =b)b(r) = a}*Fy(=1), (52)
K(e) = =lim /2>c=n(r) = —al*Fi(1), (53)

where ¢ = (¢ —b)/2. Since F (1) is determined at discrete points away from the end points
—1 and + 1, recourse is made to the formulae given by Krenk (1975) to obtain F(—1)
and F (1).

INNER CRACK TIP AT INTERFACE

For the case b = 4, i.c. when the inner crack tip is at the interface, k4 (r, 1) given by eqn
(41) is no longer bounded for all r, ¢ in the closed interval [A, ¢]. By adding and subtracting
the asymptotic value of £4(r, 1, 5) for large values of s, from the integrand in eqn (41),
k(r, 1) may be expressed as

karot) = ky(r ) +ka(r. ), (54)
where
kafr.1) = L (k2(r.t.9) =K (r 0.9)) ds+ T3/(r, 1), (55)
et )
ki(r.t.s) = —[R\s*+ Ry5+ Ry] —, (56)

2\/;1
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H ]
Ir.n = —;—»[ Y S+ Y T,jl (37)
2\,/r; t= P= 1
ka(roty = I5(ro0). (58
1 Co ¢ {r—a) 2e(r—a)’ }
I<(r.0) = o e e e b 9
(r.n 2\/;} {(r+l—2a) (r+t=2a)"  (r+t=2a)° (59)
1 T+x Hl—-a 6(1—g MERET
I T L= B LT S
2 1+ iy 4w, A+K, H+K,
where R. T, (i=1.2. Y and §, (i=1L...., 6) are given in Appendix B and k, = 34y,

{i=1.2). Ineqn (55). k5{r. 1) is bounded in {h, ¢] for all r, ¢ and &,.(r, #) is unbounded as
rand ¢ approach a. The singular kernel &,,(r. 1) is of the same form as that given by Erdogan
et al. (1973) for the corresponding plane strain problem.

Equations (38) can now be rewritten as

t- (ﬂf-}- de+ :{j Lir. (3 de + LJ tr.nyp(ydr = —p(r). a<r<c (61)

Ay {—r
where
L{r 0y = 2tk (r 1) (62)
La(rot) = k\(ro ) + 20k 5, (r. 1), (63)

and where L(r, 1) is a Fredholm kernel.
The solution to eqn (61) is expressed as

P(t) = (c= ) (1 =)’y (1), (64)
and following the technique given by Muskhelishvili (1953, Chapter §) which is also

claborated by Erdogun ¢r al. (1973) the following characteristic equations are obtained to
determine 2 and ff:

cot nx = 0, (65)
2 cosa(f+ D—d:{(f+ 1) —dy =0, (66)
where
dy = (I +iaKo)(fi+Ky), (67)
dy = 401 — (1 + finy). (68)
dy = —(1 =) (1 +axe) + (1 +iic )i+ r ) = (L +x i+ K,). (69

[t is noted that eqns (65) and (66) arc identical to that obtained in the planc strain case.
Equation (65) yiclds x = — ! which is the well-known singularity for a crack tip surrounded
by a homogeneous medium. The rcal constant f§ is a function of the material propertics of
the fiber and matrix.

Normalizing the interval {a. ¢) by defining
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1=£—§£r+%‘, r=c%ap+c+Ta. (70)
o) = hx(1) = F(D)(1 =) (z + 1), )]
L.(p.r)=¥l.(r.z), L:(p.7) =C;al:(r.t), (72)
p(r) = P(p). (73)

we obtain

1
%J‘ {;’l‘; +L1(P-T)+L:(P-t)}1‘-z(t)(l——r)’(t+l)/’ dt = —P(p). —l<p<l.

_l —
(74)

The crack closure condition (43) yields the equation
1
J F ()l =) (z+ 1) dt = 0. (75)
-t

Equation (74) which is a singular integral equation with a gencralized Cauchy kernel is
solved numerically by means of Gauss-Jacobi integration formulae (Erdogan ¢t ul., 1973),
under the crack closure condition cqn (75).
The stress intensity factors are defined by
K(e) = lim /2(r = )al(r.0). (76)
K(a@) = lim 2" (a—r) "al(r,0). amn

Making usc of the fact that the left-hand side of eqn (38) yiclds an expression for a.(r, 0),
for r > ¢, it can be shown that

K(e) = =2 c—a)'y:(c) = ~lim 21 e—r) 2 p(r) = =20 V2R, (1), (78)

where ¢, = (¢ —a)/2.
a’.(r.0) is obtained from eqns (11), (34) and (35) and the following expression is
obtained for K(u)

K(a) = 2" u*(c—a)*gs(a) —pu* lim 23 (r—a) Pp(r) = p*ai?Fy(—1), (79)

where

(80)

T {(3+2ﬂ)(ﬁ+~|)—-(l+2ﬁ)(l+ﬁ~o)}
=" (1 +jixg) i+ &) sin z(1 + ) '

-

Quadratic extrapolation was used to obtain Fy(— 1) and F,(1).

RESULTS AND DISCUSSION

In the numerical examples the Poisson’s ratios were taken as vq = v, = 0.25 and
p(r) = E\&, [eqn (A6), Appendix A]. The limiting case of ¢ — 20, which results in an external
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Stress Intensity Factor K'(b)
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b/e

Fig. 2. Stress intensity fuctors when the inner crack tip is away from the interface, a'c = 0.2,
vy = v, = 0.25,

crack with uniform loading cannot be considered using this formulation. When the inner
crack tip is away from the interface, i.e. when both the crack tips have square-root singu-
laritics, the normalized stress intensity factors are defined by

K(b)

K = ko)

L= = (), (81)

atly

=F (=1}, K()=

]
[AAd]

where g, = E,. Figures 2 and 3 show the normalized stress intensity factors for the ratios
ajc = 0.2 and 0.5, respectively. When the size of the crack is very small, i.c. when bfc — 1.0,
the stress intensity factors are not sensitive to the presence of the fiber ncither are they
influenced by the curvature of the body for all valucs of ji; K'(h) and K'(¢) — 1.0 which is
the result for the case of a Griffith crack in a homogeneous. isotropic matrix in plane strain.
When g > [, K'(b) > K'(c) which implies that the crack would propagate inward towards
the center. When u, » u, and b — a, K'(h) < K'{¢) due to the presence of the fiber. For a
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Stress Intensity Factor K'(b)

05 06 0.7 08 09 1.0

b/e

1.00 4

Stress Intensity Factor K'(c)
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Fig. 3. Stress intensity factors when the inner crack tip is away from the interfuce, a’c = 0.5,
v, = v, =0.25,

given crack size, i.e. for fixed b/c, both K"(h) and K’(¢) decrease with decreasing fi, as
expected.

When the inner crack tip is at the interfuce the normalized stress intensity factors are
defined by

K'(“) = A(I“)ﬂ = ﬂt[r:(__ |)‘ ]\”(c) = ‘K(‘;)z =

=21 R (). (82)
ol od2
For g =1/7, 1/2, 1.0, 2.0 and 7.0,  takes the values —0.3304, —0.4295, —0.5, —0.5755
and —0.7149, respectively. The normalized stress intensity factors are given in Fig. 4. K'(a)
increases with decreasing ji, but the inner crack tip singularity decreases with decreasing ji
as expected and hence it is not possible to compare A'(a) for different ratios of si. For a
given value of ji, when the position of the outer crack tip is held fixed K’(a) increases as
the radius of the fiber gets smaller. Since the outer crack tip singularity is independent of
i1, K'(c) decreases with decreasing i as expected. When a/c — 0, where c is finite and a —

$A5-¢
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Stress Intensity Factor K'(a)

|

a/c

Stress Intensity Factor K'(c)

alc

Fig. 4. Stress intensity factors when the inner crack tip is at the intertace, v, = v, = 0.25.

0. K'(¢) = 22/, the solution for the penny-shaped crack in a homogencous, isotropic
matrix. For ji = 1.0 only, K'(¢) = 1.0 as ¢/¢ - 1.0 since K’ (¢} is dependent on 8 as shown
in eqn (82). Both curves K’(¢) and K'(¢) tor the case g = 1.0 agree with the results of
Clements and Ang (1988).
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APPENDIX A

Stress ficlds when the fiber and matrix are subjected to a unitorm longitudinal tensile strain £y at = = £ 0
and the matrix is unconstrained at r = oo (Chawla, 1987, p. [88) arc

al(r) = a* (AD)
alir) = a0 (A2)
e

au(r) =a® (AY)
air) = = o (Ad)

o~
d'f'_(l‘) = Egty +2v40*° (AS)
”.v'.-(") = Er, (A6)
oM (r) =0 (A7)
alr) =0 (A8)

where

o Stoltapa(vo—vy)

= AY
(1 —2"n)+l‘|) (A9)

and p, v and E are the shear modulus, Poisson’s ratio and Young's modulus respectively. The superscripts and
subscripts 0 and 1 refer to the fiber and matrix, respectively.

APPENDIX B

The functions R, (i = 1, 2, 3) appearing in cqn (56) arc given by,

Ry =—. (B1)
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l 0 Q?) P:Q. ]
R,=—1|P - 2 - == P
|’: ’< o O Q. : (B3)
where
Py = 2(1— gl +axo Hr—a){t~a). (B4)
Po= (1 =@y 2Ar—al 1+ xy)=3r+t = 2all +x )+ (r—a)r+t=2a)p,, — (r—a) ps, }. (BS)

Py= 6+, (2v, = 3)+ [~ 2ino +3v, (1 —Zv.,)l+<l—;2)[(r—u)p_‘. +(r+t-2a)p;;

{ .
+'u—:(r—a)(r+l—2u)p”+(r—a)'p_‘,,]. (B6)
. 3o - ]
P o= (L +]ixg) T — S+ 7 —dvy(ji+ D)) 2a, (B7)

{5a Ya l 39
= (1 in ) | e+ e e b o |+ (93 +BT0) 64 — (34— L1
P (1 +4ixy) (a Y 6irs 7 33, 32’) (93 +87a)64t — (31— 11)/64r

—vo 21+ 24/ 160+ v, (133 —8)/16r - 3(5ji+ 7)/4a+ Ivy(i+2)/a. (BY)

(
pi:= —all +;1x.,)(8—‘:7 + ,) +31a—11)/64r — v (131—8)/16r + (— 1941 + 63)/16a

+ vy (156 ~26)/d4a+2v, (1 +ji,)/a. (BY)

poo= GU9 =T+ dv,(i- ). (B
3 ) P
P = - 32”“ +jin,) — R (B1hH
Q) = L+ N i+ 1) n12)
Q.= - i(: 2= vy kv ) Fdvge), (B13)
Q= (=D =) + v S = 2) + v, (i = 5) + vy, (1 =) )/a’. (B14)
The functions s, (i = [, 6y and T, (i = 1, 2, ) required to detine £3,(r, 1) in egn (57) are expressed as
5, =00 (115)

Qi (r+t-2a)%"

(r—a)( lr—-ﬂj

Sy= - . 16
’ Q. r =200 (10
. r=a)tl=4)
ST o r— 2 &
PO, 1
g e b |
. Qi (r+1=2uy 1
.= = -z (BI9
S, = _QI( — )P, )
c o el ) 5
e W VAL @0
P O Qi) !
T o= - -'{ = PG Pt a— B21
I Ql( @ @ijr+t-2a) ( )
Ty= - ~-rl~~f-(r—-a)(l—;1)p ) (B22)
? ll:Ql e
— ) (=g
7= - Lo -a) (B23)

0irr =2y P



